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Abstract

In Bayesian Deep Learning, distributions over the output of classification neural networks
are approximated by first constructing a Gaussian distribution over the weights, then
sampling from it to receive a distribution over the categorical output distribution. This
is costly. We reconsider old work to construct a Dirichlet approximation of this output
distribution, which yields an analytic map between Gaussian distributions in logit space
and Dirichlet distributions (the conjugate prior to the categorical) in the output space. We
argue that the resulting Dirichlet distribution has theoretical and practical advantages,
in particular more efficient computation of the uncertainty estimate, scaling to large
datasets and networks like ImageNet and DenseNet. We demonstrate the use of this
Dirichlet approximation by using it to construct a lightweight uncertainty-aware output
ranking for the ImageNet setup.
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Zusammenfassung

Im Bayesian Deep Learning werden Verteilungen über die Ausgaben von neuronalen
Netzen dadurch erzeugt, dass zunächst eine Gaussverteilung über die Gewichte kon-
struiert wird und aus dieser dann samples gezogen werden, welche, nach Anwendung
der softmax Funktion, eine kategorische Verteilung darstellen. Das ist aufwendig. Wir
nutzen altes, aber nützliches, Wissen um eine Dirichlet Approximation der Ausgabev-
erteilung zu konstruieren. Diese Brücke stellt eine analytische Abbildung zwischen
einer Normalverteilung im logit-Raum und einer Dirichletverteilung (dem conjugate
prior der Kategorischen Verteilung) im Ausgaberaum dar. Wir argumentieren, dass die
resultierende Dirichletverteilung theoretische und praktische Vorteile hat. Die Berech-
nung der Unsicherheit bezüglich der Ausgabeverteilung ist beispielsweise wesentlich
effizienter und die Methode lässt sich einfach auf große Datensätze und Netzwerke,
wie ImageNet und DenseNet, hochskalieren. Wir demonstrieren diesen Fakt mit einem
Unsicherheits-bewussten Ausgaberanking für ImageNet.
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1 Introduction

Quantifying the uncertainty of neural networks’ (NNs) predictions is important in
safety-critical applications such as medical-diagnosis Begoli et al. (2019) and self-driving
vehicles McAllister et al. (2017); Michelmore et al. (2018). Architectures for classification
tasks produce a probability distribution as their output, constructed by applying the
softmax to the point-estimate output of the penultimate layer. However, it has been
shown that this distribution is overconfident (Nguyen et al., 2015; Hein et al., 2019) and
thus cannot be used for predictive uncertainty quantification.

Approximate Bayesian methods provide quantified uncertainty over the network’s
parameters and thus the outputs in a tractable fashion. The commonly used Gaussian
approximate posterior (MacKay, 1992a; Graves, 2011; Blundell et al., 2015; Ritter et al.,
2018) approximately induces a Gaussian distribution over the logits of a NN (Mackay,
1995). However, the associated predictive distribution, which is the expectation of the
softmax function w.r.t. the Gaussian, does not have an analytic form. It is thus generally
approximated by Monte Carlo (MC) integration requiring multiple samples. Predictions
in Bayesian neural networks (BNNs) are thus generally expensive operations.

In this thesis, we re-introduce an old but largely overlooked idea originally proposed
by David JC MacKay (1998) in a different setting (arguably the inverse of the Deep
Learning setting). Dirichlet distributions are generally defined on the simplex. But
when its variable is defined on the inverse softmax’s domain, its shape effectively
approximates a Gaussian. The inverse of this approximation, which will be called the
Laplace Bridge here (Hennig et al., 2012), analytically maps a Gaussian distribution onto a
Dirichlet distribution. Given a Gaussian distribution over the logits of a NN, one can
thus efficiently obtain an approximate Dirichlet distribution over the softmax outputs
(Figure 1.1). Our contributions in this thesis are: We re-visit MacKay’s derivation with
particular attention to a symmetry constraint that becomes necessary in our “inverted”
use of the argument from the Gaussian to the Dirichlet family. We then validate the quality
of this approximation both by theoretical and empirical arguments, and demonstrate
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CHAPTER 1. INTRODUCTION 1

(a) Monte Carlo (b) Laplace Bridge

Figure 1.1: Densities on the simplex of the true distribution (left column, computed by exhaustive
sampling by mapping a Gaussian random variable through the softmax transforma-
tion) and “Laplace Bridge” approximation constructed in this thesis (right column).
For the top and bottom rows, two different Gaussians were used, such that the
resulting mode is the same, but the uncertainty differs.

significant speed-up over MC-integration. Finally, we show a use-case, leveraging the
analytic properties of Dirichlet distributions to improve the popular top-k metric through
uncertainties.

To sharpen the intuition about the modifications to classical BNNs proposed by this
thesis consider Figure 1.2.

We think that the Laplace Bridge is a valuable method to estimate predictive uncertainty
because it is easy to add to already existing architectures and it is very fast compared
to sampling schemes. When combined with a Laplace approximation of the weights,
the Laplace Bridge can use pre-trained models and is, therefore, a simple extension
to existing architectures. The cost of computing the Laplace Bridge are lower than
drawing one (!) sample from a Gaussian distribution over the logits and the result is a
fully parameterized Dirichlet distribution over the output space. This implies that the
computational cost during application is reduced to a minimum. Having fast predictive
uncertainty is important because it means viability for safety-critical applications, e.g.
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Figure 1.2: Visualization of the modification of BNNs through the Laplace Bridge. The Parameter
space part is representative for any method that yields a Gaussian predictive poste-
rior in the logit space. Top: The softmax function is applied to samples drawn from
the posterior predictive Gaussian. The result is a distribution represented by samples.
Bottom: The Laplace Bridge is applied to the posterior predictive Gaussian. The
result is a parameterized Dirichlet distribution over the outputs.

self-driving cars where a difference of milliseconds can increase safety and be used in
rapid succession for multiple hundred frames per second.

Chapter 2 provides the mathematical derivation. Chapter 3 and 3.1 discuss the Laplace
Bridge in the context of neural networks and with a deeper analysis of different ways
to do posterior inference. We compare it to the recent approximations of the predictive
distributions of NNs in Chapter 4. Empirical experiments are presented in Chapter 5.

11





2 The Laplace Bridge
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Figure 2.1: (Adapted from Hennig et al. (2012)). Visualization of the Laplace Bridge for the Beta
distribution (special 1D case of the Dirichlet). Left: “Generic” Laplace approximations
of standard Beta distributions by Gaussians. Note that the Beta Distribution (red
curve) does not even have a valid approximation because the Hessian is not positive
semi-definite. Middle: Laplace approximation to the same distributions after basis
transformation through the softmax (7.4). The transformation makes the distributions
“more Gaussian” (i.e. uni-modal, bell-shaped, with support on the real line) compared
to the standard basis, thus making the Laplace approximation more accurate. Right:
The same Beta distributions, with the back-transformation of the Laplace approxima-
tions from the middle figure to the simplex, yielding a much improved approximate
distribution. In particular, in contrast to the left-most image, the dashed lines now
actually are probability distributions (they integrate to 1 on the simplex).

Laplace approximations1 are a popular and light-weight method to approximate a
general probability distribution q(x) with a Gaussian N(x|µ,Σ). It sets µ to a mode of
q, and Σ = −(∇2 logq(x)|µ)−1, the inverse Hessian of logq at that mode. This scheme can
work well if the true distribution is unimodal and defined on the real vector space.

The Dirichlet distribution, which has the density function

Dir(π|α) :=
Γ
(∑K

k=1αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , (2.1)

1For clarity: Laplace approximations are also one out of several possible ways to construct a Gaussian
approximation to the weight posterior of a neural network, by constructing a second-order Taylor
approximation of the empirical risk at the trained weights. This is not the way they are used in this
section. The Laplace Bridge is agnostic to how the input Gaussian distribution is constructed. It could,
e.g., also be constructed as a variational approximation, or the moments of Monte Carlo samples. See
also Section 3.1.
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CHAPTER 2. THE LAPLACE BRIDGE 2

is defined on the probability simplex and can be multimodal in the sense that the maxima
of the distribution lie at the boundary of the simplex when αk < 1, for all k = 1, . . . ,K.
Both issues preclude a Laplace approximation, at least in the naïve form described
above. However, MacKay (1998) noted that both can be fixed, elegantly, by a change of
variable. Details of the following argument can be found in the appendix. Consider the
K-dimensional variable π ∼Dir(π|α) defined as the softmax of z ∈RK:

πk(z) :=
exp(zk)∑K
l=1 exp(zl)

, (2.2)

for all k = 1, . . . ,K. We will call z the logit of π. When expressed as a function of z, the
density of the Dirichlet in π has to be multiplied by the Jacobian determinant

det
∂π
∂z

=
∏

k

πk(z), (2.3)

thus removing the −1 terms in the exponent:

Dirz(π(z)|α) :=
Γ
(∑K

k=1αk

)
∏K

k=1 Γ(αk)

K∏
k=1

πk(z)αk , (2.4)

This density of z (!), the Dirichlet distribution in the softmax basis, can now be accurately
approximated by a Gaussian through a Laplace approximation, yielding an analytic map
from the parameter space α ∈RK

+ to the parameter space of the Gaussian (µ ∈RK and
symmetric positive definite Σ ∈RK×K), given by

µk = logαk−
1
K

K∑
l=1

logαl (2.5)

Σk` = δk`
1
αk
−

1
K

 1
αk

+
1
α`
−

1
K

K∑
u=1

1
αu

 . (2.6)

A visualization of the Laplace Bridge for the one-dimensional special case can be
found in figure 2.1. The corresponding derivations require care because the Gaussian
parameter space is evidently larger than that of the Dirichlet and not fully identified by
the transformation. A pseudo-inverse of this map was provided by Hennig et al. (2012).

14



2 CHAPTER 2. THE LAPLACE BRIDGE

It maps the Gaussian parameters to those of the Dirichlet as

αk =
1

Σkk

1−
2
K

+
eµk

K2

K∑
l=1

e−µl

 , (2.7)

(Note that this equation ignores off-diagonal elements of Σ, more discussion below).
Together, Eqs. 2.5, 2.6 and 2.7 will here be used for Bayesian Deep Learning, and jointly
called the Laplace Bridge. Note that, even though the Laplace Bridge implies a reduction
of the expressiveness of the distribution, we show in Chapter 3 that this map is still
sufficiently accurate.

(a) (b) (c)

Figure 2.2: As in Figure 1.1, more densities of the true distribution (top) arising from mapping
a Gaussian random variable through the softmax, and the corresponding Dirichlet
pdf produced by the Laplace Bridge (bottom). The Dirichlet approximation, with
its reduced parameter-space, captures most of the features of the ground-truth
distribution.

Figures 1.1, 2.2 and 2.3 show the quality of the resulting approximation. We consider
multiple different µ,Σ in three dimensions, i.e. simulating a classification task with three
classes. We sample from the Gaussian and apply the softmax transform to all samples
and compare the resulting histogram on the simplex to the probability density function
of the corresponding Dirichlet. Figure 1.1 emphasizes that a point estimate is insufficient.
Since the mean for the Dirichlet is the normalizedα parameter vector, the parameters that
generate Figure 1.1 (α1 = [2,2,6]> and α2 = [11,11,51]>) yield the same point estimate
even though their distributions are clearly different. The figures show that the Laplace
Bridge is a sufficiently good approximation and that it maps a change of uncertainty as
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CHAPTER 2. THE LAPLACE BRIDGE 2

(a) High uncertainty (b) Med. uncertainty (c) Low uncertainty

Figure 2.3: The densities (via histograms) of the true predictive distribution (top) arising from a
Gaussian random variable and the corresponding densities approximated via the
Laplace Bridge (bottom).

expected.
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3 The Laplace Bridge for BNNs

Let fθ :RN
→RK be an L-layer neural network parametrized by θ ∈RP, with a Gaus-

sian approximate posterior N(θ|µθ,Σθ). For any input x ∈ RN, one way to obtain an
approximate Gaussian distribution on the pre-softmax output (logit vector) fθ(x) =: z is
as

q(z|x) ≈N(z|µ>θx,J(x)>ΣθJ(x)) , (3.1)

where J(x) is the P×K Jacobian matrix representing the derivative ∂z
∂θ (Mackay, 1995).

Approximating the density of the softmax of this Gaussian random variable as a Dirichlet,
using the Laplace Bridge, analytically approximates the predictive distribution in a single
step, as opposed to many samples. From Eq. (2.7), this requires O(K) computations
to construct the K parameters αk of the Dirichlet. In contrast, MC-integration has
computational costs of O(MJ), where M is the number of samples and J is the cost
of sampling from q(z|x) (typically J is of order K2 after an initial O(K3) operation for
a matrix decomposition of the covariance). The Monte Carlo approximation has the
usual sampling error of O(1/

√
M), while the Laplace Bridge has a fixed but small error

(empirical comparison in Section 5.3).

We now discuss several qualitative properties of the Laplace Bridge relevant for the
uncertainty quantification use case in Deep Learning. For output classes of “comparably
high” probability (as defined below), the variance Var(πk|α) under the Laplace Bridge
increases with the variance of the underlying Gaussian. In this sense, the Laplace Bridge
approximates the uncertainty information encoded in the output of a BNN.
Proposition 1 (proof in supplements). Let Dir(π|α) be obtained via the Laplace Bridge from
a Gaussian distributionN(z|µ,Σ) over RK. Then, for each k = 1, . . . ,K, letting α,k :=

∑
l,kαl, if

αk >
1
4

(√
9α2
,k + 10α,k + 1−α,k−1

)
,

then the variance Var(πk|α) of the k-th component of π is increasing in Σkk.

Intuitively, this result describes the condition that needs to be fulfilled such that the

17



CHAPTER 3. THE LAPLACE BRIDGE FOR BNNS 3

variance of the resulting Dirichlet scales with the variance of the k-th component of
the Gaussian. It can be seen as a proxy for a high quality approximation. An empirical
evaluation testing the frequency of the condition being fulfilled can be found in the
appendix.

Further benefits of this approximation arise from the convenient analytical properties of
the Dirichlet exponential family. For example, a point estimate of the posterior predictive
distribution is directly given by the Dirichlet’s mean,

Eπ =

 α1∑K
l=1αl

, . . . ,
αK∑K
l=1αl

> , (3.2)

which can be seen in the second image of Figure 2.1. Further, Dirichlets have Dirichlet
marginals: If p(π) = Dir(π|α), then

p([π1,π2, . . . ,π j,
∑
k> j

πk]>) = Dir(α1,α2, . . . ,α j,
∑
k> j

αk) . (3.3)

An additional benefit of the Laplace Bridge for BNNs is that it is more flexible than a MC-
integral. If we let p(π) be the distribution overπ := softmax(z) := [ez1/

∑
l ezl , . . . ,ezK/

∑
l ezl]>,

then the MC-integral can be seen as a “point-estimate” of this distribution since it
approximates Eπ. In contrast, the Dirichlet distribution Dir(π|α) approximates the
distribution p(π). Thus, the Laplace Bridge enables tasks that can be done only with a
distribution but not a point estimate. For instance, one could ask “what is the distribution
of the first L classes?” when one is dealing with K-class (L < K) classification. Since the
marginal distribution can be computed analytically (3.3), the Laplace Bridge provides a
convenient yet cheap way of answering this question.

3.1 Posterior inference

In principle, the Gaussian over the weights required by the Laplace Bridge for BNNs (see
Equation 3.1) can be constructed by any Gaussian approximate Bayesian methods such
as variational Bayes (Graves, 2011; Blundell et al., 2015) and Laplace approximations
for neural networks (MacKay, 1992a; Ritter et al., 2018). We will focus on the Laplace
approximation, which uses the same principle as the Laplace Bridge. However, in the
Laplace approximation for neural networks, the posterior distribution over the weights

18 3.1. POSTERIOR INFERENCE



3 CHAPTER 3. THE LAPLACE BRIDGE FOR BNNS

of a network is the one that is approximated as a Gaussian, instead of a Dirichlet
distribution over the outputs as in the Laplace Bridge.

Given a datasetD := {(xi, ti)}Di=1 and a prior p(θ), let

p(θ|D) ∝ p(θ)p(D|θ) = p(θ)
∏

(x,t)∈D

p(y = t|θ) , (3.4)

be the posterior over the parameters θ of an L-layer network fθ. Then we can get an
approximation of the posterior p(θ|D) by fitting a GaussianN(θ|µθ,Σθ) where

µθ = θMAP ,

Σθ = (−∇2
|θMAP logp(θ|D))−1 =: H−1

θ .

That is, we fit a Gaussian centered at the mode θMAP of p(θ|D) with the covariance
determined by the curvature at that point. We assume that the prior p(θ) is a zero-mean
isotropic GaussianN(θ|0,σ2I) and the likelihood function is the Categorical density

p(D|θ) =
∏

(x,t)∈D

Cat(y = t|softmax( fθ(x))) .

For various applications in Deep Learning, the approximation in (3.1) is often com-
putationally too expensive. Indeed, for each input x ∈ RN, one has to do K backward
passes to compute the Jacobian J(x). Moreover, it requires an O(PK) storage which is also
expensive since P is often in the order of millions. A cheaper alternative is to fix all but
the last layer of fθ and only apply the Laplace approximation on WL, the last layer’s
weight matrix. This scheme has been used successfully by Snoek et al. (2015); Wilson et al.
(2016), etc. and has been shown empirically to be effective in uncertainty quantification
tasks (Brosse et al., 2020). In this case, given the approximate last-layer posterior

p(WL
|D) ≈N(vec(WL)|vec(WL

MAP),H−1
WL) , (3.5)

one can efficiently compute the distribution over the logits. That is, let φ : RN
→ RQ

be the first L−1 layers of fθ, seen as a feature map. Then, for each x ∈RN, the induced
distribution over the logit WLφ(x) =: z is given by

p(z|x) =N(z|WL
MAPφ(x), (φ(x)>⊗ I)H−1

WL(φ(x)⊗ I)) , (3.6)

where ⊗ denotes the Kronecker product.

3.1. POSTERIOR INFERENCE 19



CHAPTER 3. THE LAPLACE BRIDGE FOR BNNS 3

An even more efficient last-layer approximation can be obtained using a Kronecker-
factored matrix normal distribution (Louizos, Welling, 2016; Sun et al., 2017; Ritter et al.,
2018). That is, we assume the posterior distribution to be

p(WL
|D) ≈MN(WL

|WL
MAP,U,V) , (3.7)

where U ∈RK×K and V ∈RQ×Q are the Kronecker factorization of the inverse Hessian
matrix H−1

WL (Martens, Grosse, 2015). In this case, for any x ∈RN, one can easily show
that the distribution over logits is given by

p(z|x) =N(z|WL
MAPφ(x), (φ(x)>Vφ(x))U) , (3.8)

which is easy to implement and computationally cheap. Finally, and even more efficient,
is a last-layer approximation scheme with a diagonal Gaussian approximate posterior, i.e.
the so-called mean-field approximation. In this case, we assume the posterior distribution
to be

p(WL
|D) ≈N(vec(WL)|vec(WL

MAP),diag(σ2)) , (3.9)

where σ2 is obtained via the diagonal of the Hessian of the log-posterior w.r.t. vec(WL) at
vec(WL

MAP).

20 3.1. POSTERIOR INFERENCE



4 Related Work

In Bayesian neural networks, analytic approximations of posterior predictive distributions
have attracted a great deal of research. In the binary classification case, for example, the
probit approximation has been proposed already in the 1990s (Spiegelhalter, Lauritzen,
1990; MacKay, 1992b). However, while there exist some bounds (Titsias, 2016) and
approximations of the expected log-sum-exponent function (Ahmed, Xing, 2007; Braun,
McAuliffe, 2010), in the multi-class case, obtaining a good analytic approximation of
the expected softmax function under a Gaussian measure is still considered an open
problem. The Laplace Bridge is of interest in this domain, too, as the approximation of
this integral can be analytically computed via (3.2).

Approaches like Wu et al. (2018) and Haussmann et al. (2019) show the effectiveness of,
and a general desire to provide sampling free methods for Bayesian Deep Learning. The
Laplace Bridge furthers this trend since it is also sampling-free.

Recently, it has been proposed to model the distribution of softmax outputs of a network
directly. Similar to the Laplace Bridge, Malinin, Gales (2018, 2019); Sensoy et al. (2018)
proposed to use the Dirichlet distribution to model the posterior predictive for non-
Bayesian networks. They further proposed novel training techniques in order to directly
learn the Dirichlet. In contrast, the Laplace Bridge tackles the problem of approximating
the distribution over the softmax outputs of the ubiquitous Gaussian-approximated
Bayesian networks (Graves, 2011; Blundell et al., 2015; Louizos, Welling, 2016; Sun et al.,
2017, etc) without any additional training procedure. Further differences between the
Laplace Bridge and Malinin, Gales (2018, 2019); Sensoy et al. (2018) include a) they
require retraining of the network while ours can use pre-trained weights. The Laplace
Bridge is, therefore, easier to apply to already-existing architectures and b) Malinin,
Gales (2018, 2019) require OOD samples during training while our method bases its
uncertainty estimate solely on the information already included in the weights.

21





5 Experiments

We conduct five experiments. In Section 5.1, we analyze the approximation quality of
the Laplace Bridge applied to a BNN on the MNIST LeCun, Cortes (2010) dataset. Then,
we compare the Laplace Bridge to the MC-integral in terms of the out-of-distribution
(OOD) detection performance in Section 5.2. Their computational costs are compared
in Section 5.3. In Section 5.4 we visualize some properties of the Laplace Bridge and
compare it to sampling-based methods. Finally, in Section 5.5, we present analysis on
ImageNet Russakovsky et al. (2014) to demonstrate the scalability of the Laplace Bridge
and the advantage of having a full Dirichlet distribution over softmax outputs.
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Figure 5.1: Average variance of the Dirichlet distributions of each MNIST class. The in-
distribution uncertainty (variance) is nearly nil, while out-of-distribution variance
is high.

5.1 Uncertainty estimates on MNIST

We empirically investigate the approximation quality of the Laplace Bridge in a “real-
world” BNN on the MNIST dataset. A convolutional network with 2 convolutional and 2
fully-connected layers is trained on the first three digits of MNIST (the digits 0, 1, and 2).
Adam optimizer with learning rate 1e-3 and weight decay 5e-4 is used. The batch size is
128. To obtain the posterior over the weights of this network, we perform a full (all-layer)
Laplace approximation using BackPACK (Dangel et al., 2019) to get the diagonal Hessian.
The network is then evaluated on the full test set of MNIST (containing all ten classes).

We present the results in Figure 5.1. We show for each k = 1, . . . ,K, the average variance
1

Dk

∑Dk
i=1 Var(πk( fθ(xi))) of the resulting Dirichlet distribution over the softmax outputs,

where Dk is the number of test points predicted with label k. The results show that
the variance of the Dirichlet distribution obtained via the Laplace Bridge is useful for
uncertainty quantification: The mean variance of the first three classes is close to zero,
while that of the other classes is higher. Therefore, these variances are informative for
detecting OOD data. Samples of the in- and out-of-distribution sets reflect this difference
in uncertainty, as shown in Figure 5.2. While these results could also be obtained via
sampling, the Laplace Bridge provides a computationally lightweight alternative for
estimating predictive uncertainty.

24 5.1. UNCERTAINTY ESTIMATES ON MNIST
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In-distribution predictions

Out-of-distribution predictions

Figure 5.2: Top: In-distribution pdfs. All probability mass is concentrated in the corner of the
respective correct class. Bottom: Out-of-distribution pdfs. The probability mass is
distributed more equally since the networks’ uncertainty about is higher.

Diag Sampling Laplace Bridge (mean)
Train Test MMC AUROC Time MMC AUROC Time

MNIST MNIST 0.932 ± 0.007 - 6.6 0.987 ± 0.001 - 0.016
MNIST FMNIST 0.407 ± 0.010 0.989 ± 0.002 6.6 0.377 ± 0.019 0.994 ± 0.002 0.016
MNIST notMNIST 0.535 ± 0.018 0.958 ± 0.006 12.3 0.630 ± 0.018 0.962 ± 0.007 0.029
MNIST KMNIST 0.500 ± 0.014 0.974 ± 0.005 6.6 0.630 ± 0.018 0.975 ± 0.004 0.016

CIFAR-10 CIFAR-10 0.949 ± 0.001 - 6.6 0.969 ± 0.002 - 0.017
CIFAR-10 CIFAR-100 0.724 ± 0.002 0.884 ± 0.004 6.6 0.774 ± 0.003 0.858 ± 0.004 0.016
CIFAR-10 SVHN 0.659 ± 0.028 0.931 ± 0.007 17.0 0.704 ± 0.036 0.923 ± 0.008 0.041

SVHN SVHN 0.986 ± 0.000 - 17.1 0.991 ± 0.000 - 0.040
SVHN CIFAR-10 0.537 ± 0.012 0.995 ± 0.000 6.61 0.392 ± 0.016 0.996 ± 0.000 0.169
SVHN CIFAR-100 0.543 ± 0.009 0.994 ± 0.000 6.61 0.400 ± 0.013 0.996 ± 0.000 0.016

CIFAR-100 CIFAR-100 0.527s ± 0.004 - 6.68 0.263 ± 0.003 - 0.017
CIFAR-100 CIFAR-10 0.276 ± 0.004 0.707 ± 0.004 6.67 0.068 ± 0.003 0.703 ± 0.003 0.018
CIFAR-100 SVHN 0.348 ± 0.014 0.647 ± 0.011 17.2 0.074 ± 0.012 0.661 ± 0.013 0.040

Table 5.1: OOD detection results. Optimally, the MMC for OOD data is low and the AUROC
is high. While there is arguable no clear winner when it comes to discriminating in-
and out-distribution data w.r.t. both metrics, the Laplace Bridge is around 400 times
faster on average. Time is measured in seconds. Five runs with different seeds per
experiment were conducted. 1000 samples were drawn from the Gaussian over the
outputs. The (F-, K-, not-)MNIST experiments were done with a Laplace approximation
of the entire network while the others only used the last layer.
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5.2 OOD detection

We compare the performance of the Laplace Bridge to the MC-integral on a standard
OOD detection benchmark suite, to test whether the Laplace Bridge gives similar results
to the MC sampling method and compare their computational overhead. Following
prior literature, we use the standard mean-maximum-confidence (MMC) and area under
the ROC-curve (AUROC) metrics (Hendrycks, Gimpel, 2016). For an in-distribution
dataset, a higher MMC value is desirable while for the OOD dataset we want a lower
MMC value (optimally, 1/K in K-class classification problems). For the AUROC metric,
the higher the better, since it represents how good a method is for distinguishing in- and
out-of-distribution datasets.

The test scenarios are as follows: (i) The same convolutional network as in Section 5.1 is
trained on the MNIST dataset. To approximate the posterior over the parameter of this
network, a full (all-layer) Laplace approximation with the exact Hessian is employed.
The OOD datasets for this case are FMNIST Xiao et al. (2017), notMNIST Bulatov (2011),
and KMNIST Clanuwat et al. (2018). (ii) For larger datasets, i.e. CIFAR-10 Krizhevsky
(2009), SVHN Netzer et al. (2011), and CIFAR-100 Krizhevsky (2009), we use a ResNet-18
network (He et al., 2016). Since this network is large, (3.1) in conjunction with a full
Laplace approximation is too costly. We, therefore, use a last-layer Laplace approximation
to obtain the approximate diagonal Gaussian posterior. The OOD datasets for CIFAR-10,
SVHN, and CIFAR-100 are SVHN and CIFAR100; CIFAR-10 and CIFAR-100; and SVHN
and CIFAR-10, respectively. In all scenarios, the networks are well-trained with 99%
accuracy on MNIST, 95.4% on CIFAR-10, 76.6% on CIFAR-100 and 100% on SVHN.
For the sampling baseline, we use 1000 posterior samples to compute the predictive
distribution. We use the mean of the Dirichlet to obtain a comparable approximation to
the MC-integral. Experiments comparing the Laplace Bridge to a KFAC approximation
of the last layer and sampling from all weights of the network can be found in the
appendix.

The results are presented in Table 5.1. The Laplace Bridge is competitive to the baseline
in terms of the MMC and AUROC metrics. In the case of MNIST and SVHN the Bridge
is better than the MC-integral w.r.t. the AUROC metric. Moreover, the Laplace Bridge is
also better than the sampling baseline in terms of the MMC metric in the SVHN and
CIFAR-100 datasets. The key observation, however, is that the Bridge is on average
around 400 times faster than the sampling baseline, while returning at least competitive,
if not even improved fidelity.
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5.3 Time comparison

We compare the computational cost of the density-estimated psample distribution via
sampling and the Dirichlet distribution obtained from the Laplace Bridge pLB for
approximating the true distribution ptrue over softmax-Gaussian samples1. Different
amounts of samples are drawn from the Gaussian, the softmax is applied and the KL
divergence between the histogram of the samples with the true distribution is computed.
We use KL-divergences DKL(ptrue‖psample) and DKL(ptrue‖pLB), respectively, to measure
similarity between the approximations and ground truth while the number of samples
for psample is increased on a logarithmic scale. The true distribution ptrue is constructed
via Monte Carlo with 100k samples. The experiment is conducted for three different
Gaussian distributions over R3. Since the softmax applied to a Gaussian does not have a
closed-form analytic solution, the calculation of the approximation error is not possible
and an empirical evaluation via sampling is the best option. The fact that there is no
analytic solution is part of the justification for using the Laplace Bridge in the first place.

Figure 5.3 suggests that the number of samples required such that the distribution psample

is approximating the true distribution ptrue as good as the Dirichlet distribution obtained
via the Laplace Bridge is large, i.e. somewhere between 500 and 10000. This translates to a
wall-clock time advantage of at least a factor of 100 before sampling becomes competitive
in quality with the Laplace Bridge.

1I.e. samples are obtained by first sampling from a Gaussian and transforming it via the softmax function.
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Figure 5.3: KL-divergence plotted against the number of samples (top) and wall-clock time
(bottom). Monte Carlo density estimation becomes as good as the Laplace Bridge
after around 750 to 10000 samples and takes at least 100 times longer. The three
lines represent three different samples.

5.4 Toy dataset

To understand the properties of the Laplace Bridge we visualize its predictions on a toy
dataset. The dataset is generated by drawing from four different 2D Gaussians and the
task is for a neural network to classify them. The network is a simple four-layer network
with ReLU activations and 100 units per layer. A visualization is created by using different
methods for calculating predictive uncertainty for all points on a two-dimensional grid.
There are four methods to predict uncertainty that are independent of the Laplace Bridge:
the MAP estimate, a diagonal approximation of the Hessian, a Kronecker-factorized
approximation of the Hessian and the exact Hessian. Their respective predictive entropy
can be found on the left column of Figure 5.4. This is compared to the MAP prediction
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of the Laplace Bridge, its predictive entropy, the variance of the MAP estimate of the
Dirichlet and a MAP estimate that is weighted by it’s respective variance. These can be
found in the right column of Figure 5.4. The estimates in the left column get increasingly
better since we include more information about the uncertainty. We conclude that the
entropy and the variance of the Dirichlet are only marginally better than the original MAP
estimate. Reweighing the estimate by the variance improves it slightly. However, the
Laplace Bridge is not able to produce a similarly good estimate as a Kronecker-factorized
or exact Hessian.
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Figure 5.4: Left: Entropy of the MAP estimate, a diagonal approximation of the Hessian, a
Kronecker-factorized approximation, and the exact Hessian. Right: MAP prediction
of the Dirichlet coming from the Laplace Bridge, its predictive entropy, the variance of
the Dirichlet, and a MAP estimate weighed by its variance. We find that the Laplace
Bridge entropy and variance are only marginally better than the MAP estimate but
the reweighed version improves it.
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5.5 Uncertainty-aware output ranking on ImageNet

Classification tasks on large datasets with many classes, like ImageNet, are not often
done in a Bayesian fashion since the posterior inference and sampling are expensive.
The Laplace Bridge, in conjunction with the last-layer Bayesian approximations, can be
used to alleviate this problem. Furthermore, having a full distribution over the softmax
outputs of a BNN gives rise to new possibilities. For example, one could subsume all
classes which have sufficiently overlapping marginal distributions into one if they are
semantically similar as illustrated in Figure 5.5.

Another possibility is to improve the standard classification metrics. Large classification
tasks like ImageNet are often compared along a top-5 metric, i.e. it is tested whether
the correct class is within the five most probable estimates of the network. Although
widely accepted, this metric has some pathologies. Consider two examples: i) Assume
the network has to classify a hypothetical image of “raptor” and it is confident that the
label is either a “hawk” or an “eagle”. Then all probability mass should be distributed
between those two classes. The three other classes within the top-5 are not needed to
inform the decision. ii) Assume the network has to classify an image of which it is
confident that it is a “fish” but it is uncertain between ten different possible fish species.
Which five of the ten fish classes is within the top-5 is nearly arbitrary and so is the
thereby following classification.

Leveraging the probabilistic output provided by the Laplace Bridge, we propose a
simple decision rule that can handle both examples and is more fine-grained due to its
awareness of uncertainty. One may call such a rule uncertainty-aware top-k; it is shown
in Algorithm 1. Instead of taking the top-k as a decision threshold for an arbitrary k
we take the uncertainty/confidence of the model to inform the decision. This is more
flexible and therefore able to handle situations in which different numbers of classes are
plausible outcomes. The Dirichlet distribution obtained from the Laplace Bridge provides
this capability. In particular, since the marginal distribution over each component of a
Dirichlet distribution is a Beta(αi,

∑
j,iα j), this can be done analytically and efficiently.

The proposed decision rule uses the area of overlap between the marginal distributions
of the sorted outcomes. This is similar to hypotheses testing, i.e. t-tests Nickerson (2000)
or its Bayesian alternatives Masson (2011). If, for example, two Beta densities overlap
more than 5%, we cannot say that they are different distributions with high confidence.
All distributions that have sufficient overlap should become the new top-k estimate.
Figure 5.5 shows four examples from the “laptop” class of ImageNet.

We evaluate this decision rule on the test set of ImageNet. The overlap is calculated
through the inverse CDF2 of the respective Beta marginals. The original top-1 accuracy
of DenseNet on ImageNet is 0.744. Meanwhile, the uncertainty-aware top-k accuracy is
0.797, where k is on average 1.688. A more detailed analysis is shown in Figure 5.6. Most
of the predictions given by the uncertainty-aware metric still yielded a top-1 prediction.

2Also known as the quantile function or percent point function
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Figure 5.5: Upper row: images from the “laptop” class of ImageNet. Bottom row: Beta marginal
distributions of the top-k predictions for the respective image. In the first column, the
overlap between the marginal of all classes is large, signifying high uncertainty, i.e.
the prediction is “I do not know”. In the column, “notebook” and “laptop” have confi-
dent, yet overlapping marginal densities and we, therefore, have a top-2 prediction:
“either a notebook or a laptop”. In the third column “desktop computer”, “screen” and
“monitor” have overlapping marginal densities, yielding a top-3 estimate. The last
case shows a top-1 estimate: the network is confident that “laptop” is the only correct
label.

This shows that using uncertainty does not imply adding meaningless classes to the
prediction. However, there are some non-negligible cases where k equals to 2, 3, or 10.
This indicates that whenever there is ambiguity in the class labels, our method is able to
detect it, and thus yields a significantly higher accuracy.
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Figure 5.6: A histogram of ImageNet predictions’ length using the proposed uncertainty-aware
top-k. Most test images are a top-1 prediction, indicating high confidence. There are
some top-2, top-3, and top-10 predictions, showing an increasing uncertainty.

Algorithm 1 Uncertainty-aware top-k

Input: A Dirichlet parameter α ∈RK obtained by applying the Laplace Bridge to the
Gaussian over the logit of an input, a percentile threshold T e.g. 0.05, a function
class_of that returns the underlying class of a sorted index.

α̃ = sort_descending(α) // start with the highest confidence

α0 =
∑

iαi
C = {class_of(1)} // initialize top-k, must include at least one class

for i = 2, . . . ,K do
Fi−1 = Beta(α̃i−1,α0− α̃i−1) // the previous marginal CDF

Fi = Beta(α̃i,α0− α̃i) // the current marginal CDF

li−1 = F−1
i−1(T/2) // left T

2 percentile of the previous marginal

ri = F−1
i (1−T/2) // right T

2 percentile of the current marginal

if ri > li−1 then
C = C∪{class_of(i)} // overlap detected, add the current class

else
break // No more overlap, end the algorithm

end if
end for

Output: C // return the resulting top-k prediction
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6 Discussion

We have adapted an old but overlooked approximation scheme for new use in Bayesian
Deep Learning. Given a Gaussian approximation to the weight-space posterior of
a Bayesian neural network and an input, the Laplace Bridge analytically maps the
marginal Gaussian prediction on the logits onto a Dirichlet distribution over the softmax
vectors. The associated computational cost of O(K) for K-class prediction compares
favorably to that of Monte Carlo sampling. The proposed method both theoretically
and empirically preserves predictive uncertainty, offering an attractive, low-cost, high-
quality alternative to Monte Carlo sampling. In conjunction with a low-cost, last-layer
Bayesian approximation, it can be useful in real-time applications wherever uncertainty
is required.
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7 Appendix

Appendix A: Background and Proofs

Change of Variable for pdf

Let x be an n-dimensional continuous random variable with joint density function px. If
y = G(x), where G is a differentiable function, then y has density py:

g(y) = f
(
G−1(y)

) ∣∣∣∣∣∣∣det

dG−1(z)
dz

∣∣∣∣∣∣
z=y


∣∣∣∣∣∣∣ (7.1)

where the differential is the Jacobian of the inverse of G evaluated at y. This procedure,
also known as ‘change of basis’, is at the core of the Laplace bridge since it is used to
transform the Dirichlet into the softmax basis.

Proof for Proposition

Proof. Considering that αk is a decreasing function of Σkk by definition (7.29), it is
sufficient to show that under the hypothesis, the derivative of ∂

∂αk
Var(πk|α) is negative.

By definition, the variance Var(πk|α) is

Var(πk|α) =

αk
αk+α,k

−
α2

k
(αk+α,k)2

αk +α,k + 1
.

The derivative is therefore

∂
∂αk

Var(πk|α) =

α,k(α2
,k−α,kαk +α,k−αk(2αk + 1))

(αk +α,k)3(αk +α,k + 1)2 .
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Solving ∂
∂αk

Var(πk|α) < 0 for αk yields

αk >
1
4

(√
9α2
,k + 10α,k + 1−α,k−1

)
.

Therefore, under this hypothesis, Var(πk|α) is a decreasing function of αk. �

Experimental Evaluation of the Proposition

To test how often the condition is fulfilled we count its frequency. The fact that the
condition is fulfilled implies a good approximation. The fact that the condition is not
fulfilled does not automatically imply a bad approximation.

frequency

MNIST MNIST -
MNIST FMNIST -
MNIST notMNIST -
MNIST KMNIST -

CIFAR-10 CIFAR-10 0.998
CIFAR-10 CIFAR-100 0.925
CIFAR-10 SVHN 0.832

SVHN SVHN 0.999
SVHN CIFAR-100 0.668
SVHN CIFAR-10 0.653

CIFAR-100 CIFAR-100 0.662
CIFAR-100 CIFAR-10 0.214
CIFAR-100 SVHN 0.166

Table 7.1

Appendix B: Laplace Approximation of the Dirichlet

Assume we have a Dirichlet in the standard basis with parameter vectorα and probability
density function:

Dir(π|α) :=
Γ
(∑K

k=1αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , (7.2)

We aim to transform the basis of this distribution via the softmax transform to be in the
new base π:
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πk(z) :=
exp(zk)∑K
l=1 exp(zl)

, (7.3)

Usually, to transform the basis we would need the inverse transformation H−1(z)
as described in the main paper. However, the softmax does not have an analytic
inverse. Therefore David JC MacKay uses the following trick. Assume we know that the
distribution in the transformed basis is:

Dirz(π(z)|α) :=
Γ
(∑K

k=1αk

)
∏K

k=1 Γ(αk)

K∏
k=1

πk(z)αk , (7.4)

then we can show that the original distribution is the result of the basis transform by the
softmax.

The Dirichlet in the softmax basis: We show that the density over π shown in Equation
7.4 transforms into the Dirichlet over z. First, we consider the special case where π is
confined to a I−1 dimensional subspace satisfying

∑
iπi = c. In this subspace we can

represent π by an I−1 dimensional vector a such that

πi = ai i, ..., I−1 (7.5)

πI = c−
I−1∑

i

ai (7.6)

and similarly we can represent z by an I−1 dimensional vector %:

zi = %i i, ..., I−1 (7.7)

zI = 1−
I−1∑

i

%i (7.8)

then we can find the density over % (which is proportional to the required density over
z) from the density over π (which is proportional to the given density over π) by finding
the determinant of the (I−1)× (I−1) Jacobian J given by
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Jik =
∂ξi

∂ai
=

I∑
j

∂xi

∂π j

∂π j

∂ak

= δikxi−xixk + xixI = xi(δik− (xk−xI)) (7.9)

We define two additional I−1 dimensional helper vectors x+
k := xk−xI and nk := 1, and

use det(I−xyT) = 1−x · y from linear algebra. It follows that

det J =

I−1∏
i=1

xi×det[I−nx+T
]

=

I−1∏
i=1

xi× (1−n ·x+) (7.10)

=

I−1∏
i=1

xi×

1−
∑

k

x+
k

 = I
I∏

i=1

xi

Therefore, using Equation 7.4 we find that

P(z) =
P(π)
|detJ|

∝

I∏
i=1

zαi−1
i (7.11)

This result is true for any constant c since it can be put into the normalizing constant.
Thereby we make sure that the integral of the distribution is 1 and we have a valid
probability distribution.

Appendix C: Inverting the Laplace Approximation of the
Dirichlet

Note that the following section is a copy of Hennig (2010) derivation. We don’t claim
any new contribution but merely want to give an overview of the content.

For a given z, all z′ satisfying z′ = z + c1 share the same value σ(z′) for any c ∈R with
1 = [1,1, ...,1]>. Since the Laplace Bridge is a map between a Gaussian and a Dirichlet
distribution we must ensure that the Dirichlet is in fact a distribution, i.e. that multiple
values don’t map to the same result. To solve this ambiguity we introduce a soft constrain
r = exp[−τ2 (1>z)2] which can be interpreted as a soft projection of the subspaces forming
parallel lines to 1 onto their intersection with the hyperplane defined by 1>z = 0.
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When r→∞, where the constraint becomes a Dirac distribution, we can again use a
reformulation of the parameter space, using K−1 parameters a defined through

zk =

ak if k = 1,2, ...,K−1

−
∑K−1

k=1 ak if k = K
(7.12)

Through the figures of the 1D Dirichlet approximation in the main thesis, we have already
established that the mode of the Dirichlet lies at the mean of the Gaussian distribution
and therefore π(y) = α∑

iαi
. Additionally, the elements of y must sum to zero. These two

constraints combined yield only one possible solution for µ.

µk = logαk−
1
K

K∑
l=1

logαl (7.13)

Calculating the covariance matrix Σ is more complicated but layed out in the following.
The logarithm of the Dirichlet is, up to additive constants

logpy(y|α) =
∑

k

αkπk−
τ
2

1>z (7.14)

Using πk as the softmax of y as shown in Equation 7.3 we can find the elements of the
Hessian L

Lkl = α̂(δklπ̂k− π̂kπ̂l) +τ(11>)kl (7.15)

where α̂ :=
∑

kαk and π̂=
αk
α̂ for the value ofπ at the mode. The term (11>)kl is a convoluted

way of writing a one that makes the following math easier to parse.

To analytically invert L we introduce a rectangular matrix X ∈RK×2 with elements

Xku = π̂kδ1u + 1kδ2u =


π̂1 1
...

...

π̂K 1

 (7.16)

and the square matrices A ∈RK×K and B ∈R2×2 with
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A = diag(α) and B =

α̂ 0
0 τ

 (7.17)

which allows us to write

L = A + XBX> (7.18)

Both A and B are diagonal with strictly positive diagonal elements and thus invertible.
Therefore we can use the matrix inversion lemma, which states

(A + XBX>)−1 = A−1
−A−1X(B−1 + X>A−1X)−1X>A−1 (7.19)

The 2×2 expression in brackets is known as the Schur complement and we can compute it
with

(B−1 + X>A−1X)i j = B−1
i j +

(
αk

α̂
δi1 + nkδi2

) 1
αk
δkl

(
αl

α̂
δ j1 + nlδ j2

)
(7.20)

= B−1
i j +

1
α̂
δi1δ j1 +

D
α̂

(δi1δ j2 +δi2δ j1) +δi2δ j2

∑
k

1
αk

(7.21)

B−1 + X>A−1X =

 0 K/α̂
K/α̂ τ−1 +

∑
kα
−1
k

 (7.22)

The inverse of a 2×2 matrix is

a b
c d

−1

=
1

ad− bc

 d −b
−c a

 (7.23)

so we get the inverse of the Schur compliment (which exists for α,τwith αk > 0 and τ > 0)

(B−1 + X>A−1X)−1 =

− α̂2

K

(
1
τ +

∑
k

1
αk

)
α̂
K

α̂
K 0

 (7.24)

we can now project this back to RK×K and get
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L−1
kl = δkl

1
αk
−

1
K

 1
αk

+
1
αl
−

1
K

1
τ

+

K∑
u

1
αu


 (7.25)

because the inverse is defined for all positive values of τ, we can now safely take the
limit of τ→∞, which hardens the constraint on the subspace 1>z.

We are mostly interested in the diagonal elements since we desire a sparse encoding for
computational reasons and we otherwise needed to map a K×K covariance matrix to a
K×1 Dirichlet parameter vector which would be a very overdetermined mapping. Note
that K is a scalar, not a matrix. The diagonal elements of Σ = L−1 can be calculated as

Σkk =
1
αk

(
1−

2
K

)
+

1
K2

k∑
l

1
αl
. (7.26)

To invert this mapping we transform Equation 7.13 to

αk = eµk

K∏
l

α1/K
l (7.27)

by applying the logarithm and re-ordering some parts. Inserting this into Equation 7.26
and re-arranging yields

K∏
l

α1/K
l =

1
Σkk

e−µ (1− 2
K

)
+

1
K2

K∑
u

e−µu

 (7.28)

which can be re-inserted into Equation 7.27 to give

αk =
1

Σkk

1−
2
K

+
e−µk

K2

K∑
l

e−µk

 (7.29)

which is the final mapping. With Equations 7.13 and 7.26 we are able to map from
Dirichlet to Gaussian and with Equation 7.29 we are able to map the inverse direction.
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Appendix D: Experiments Details

The exact experimental setups, i.e. network architectures, learning rates, random seeds,
etc. can be found in the accompanying GitHub repository1. This section is mostly used
to justify some of the decisions we made during the process in more detail and highlight
some miscellaneous interesting things.

Uncertainty estimates on MNIST

Most of the experimental setup is already explained in the main paper. The exact details
can be found in the accompanying code. Every experiment has been conducted with 5
different seeds.

OOD detection

Every experiment has been conducted with 5 different seeds. In the tables, the mean
and standard deviations are presented. The reason why the sampling procedure for the
CIFAR-10 and CIFAR-100 case are similarly fast even though we draw from a 10- vs
100-dimensional Gaussian is because the sampling procedures were parallelized on a
GPU. All prior uncertainties over the weights were chosen such that the MMC of the
sampling averages was around 5% lower than the MAP estimate. In the following, we
show the results including a KFAC approximation of the last layer.

Time comparison

Every experiment has been conducted with 5 different seeds. The presented curves are
the averages over these 5 experiments with error bars. The reason why taking one sample
is slower than two is because of the way random numbers are generated for the normal
distribution. For further information read up on the Box-Mueller Transform.

Uncertainty-aware output ranking on ImageNet

The prior covariances for the Laplace approximation of the Hessian over the weights
were chosen such that uncertainty estimate of the Laplace bridge MMC over the outputs
was not more than 5% lower than the MAP estimate. The length of the list generated
by our uncertainty aware method was chosen such that it contained at least one and
maximally ten samples. Originally we wanted to choose the maximal length according

1https://github.com/mariushobbhahn/master2020/tree/master/2019-10-Laplace_Bridge
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Diag Sampling KFAC Sampling Dirichlet mode
Train Test MMC AUROC Time MMC AUROC Time MMC AUROC Time

MNIST MNIST 0.932 ± 0.007 - 6.6 - - - 0.987 ± 0.001 - 0.016
MNIST FMNIST 0.407 ± 0.010 0.989 ± 0.002 6.6 - - - 0.377 ± 0.019 0.994 ± 0.002 0.016
MNIST notMNIST 0.535 ± 0.018 0.958 ± 0.006 12.3 - - - 0.630 ± 0.018 0.962 ± 0.007 0.029
MNIST KMNIST 0.500 ± 0.014 0.974 ± 0.005 6.6 - - - 0.630 ± 0.018 0.975 ± 0.004 0.016

CIFAR-10 CIFAR-10 0.948 - 13.6 0.857±0.003 - 13.4 0.966 - 0.031
CIFAR-10 CIFAR-100 0.708 0.889 13.6 0.562 ±0.003 0.880±0.012 13.5 0.742 0.866 0.027
CIFAR-10 SVHN 0.643 0.933 35.2 0.484 ±0.004 0.939 ±0.001 35.2 0.647 0.934 0.070

SVHN SVHN 0.986 - 34.5 0.947±0.002 - 34.6 0.993 - 0.073
SVHN CIFAR-100 0.595 0.984 13.3 0.460 ±0.004 0.986±0.001 13.4 0.526 0.985 0.027
SVHN CIFAR-10 0.593 0.984 13.3 0.458 ±0.004 0.986±0.001 13.3 0.520 0.987 0.028

CIFAR-100 CIFAR-100 0.762 - 24.5 0.404 - 24.6 0.590 - 0.030
CIFAR-100 CIFAR-10 0.467 0.788 24.4 0.213 0.788 24.6 0.206 0.791 0.027
CIFAR-100 SVHN 0.461 0.795 63.4 0.180±0.001 0.838 ±0.001 63.8 0.170 0.815 0.069

Table 7.2: Out-of-distribution detection results. A network has been trained on the data set in
the train column and is tested on the test column. Optimally, the MMC for out of
distribution data is low and the AUROC is high. There is no clear winner when it
comes to discriminating in and OOD w.r.t. both metrics. However, the Laplace Bridge
is around 400 times faster on average. Time is measured in seconds. Five runs with
different seeds per experiment were conducted. 1000 samples were drawn from the
Gaussian over the outputs. The (F-, K-, not-)MNIST experiments were done with a
Laplace approximation of the entire network while the others only used the last layer.

Sampling (100) Dirichlet mode
Train Test MMC AUROC Time MMC AUROC Time

MNIST MNIST 0.981±0.000 - 109.3 0.987 ± 0.001 - 0.016
MNIST FMNIST 0.482±0.002 0.991±0.000 109.3 0.377 ± 0.019 0.994 ± 0.002 0.016
MNIST notMNIST 0.643±0.002 0.960±0.001 44.7 0.630 ± 0.018 0.962 ± 0.007 0.029
MNIST KMNIST 0.617±0.003 0.976±0.001 109.5 0.630 ± 0.018 0.975 ± 0.004 0.016

Table 7.3: Results for sampling from all weights instead of the last layer. Number of samples
was 100. Time is measured in seconds.

to the size of the largest category (e.g. fishes or dogs) but the class tree hierarchy of
ImageNet does not answer this question meaningfully. We chose ten because there are
no reasonable bins larger than ten when looking at a histogram.
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