Modular Inverse Classification using Generative
Models

Marius Hobbhahn
Department of Computer Science
University of Tiibingen
Tiibingen, Germany
marius.hobbhahn@gmail.com

Abstract

We investigate whether temporal gradient information of generative models can be
used to classify previously unseen data points. For this we show that generative
models are able to reconstruct previously unseen sequences. When using a modular
setup, i.e. one generative network for every class, we show that every generative
model reconstructs the correct class best. Finally, the concept of modular inverse
classification (MIC) is introduced which combines the usage of temporal gradient
information to classify with the modular approach. It is tested and compared to a
conventional way of classification and a nearest neighbor approach. MIC is able to
outperform the conventional classification in all instances and the nearest neighbor
in most.

1 Introduction

Using temporal gradient methods has been shown to produce goal-directed behavior in the domain
of planning future trajectories in partially observable environments [OSFB17]. The model has been
successfully extended to not only include the prospective inference but also a retrospective inference
process, i.e. inferring the unobservable contextual state that best explains its recently encountered
sensorimotor experiences [MDAS18]]. The question of this paper is whether the accomplishments of
temporal gradient methods are transferable to classification tasks, specifically in the low-data regime.
Creating models that achieve accuracy with low amounts of training data is important because many
datasets contain only very few data points. Medical trials, for example often have high cost associated
with every additional data point, or in cases of rare diseases, data points are just not available.
Using a generative model instead of a forward model is important because of the accuracy and
robustness it provides. A generative model is able to create previously unseen data when the latent
space is well defined. A conventional forward model often needs a lot of training data to generalize
and is prone to adversarial attacks.

In my bachelor thesis [Hob18]] I already tested whether inverse classification is possible in general.
This is an extension on my thesis where instead of using one big generative model, multiple small
generative models are used in a modular fashion. The result from [Hob18]] shows that learning one big
generative model for all classes leads to a very irregular latent space, likely because it is too complex
of a task for a model of this size. In [ORB19] it was shown that in such situations the problem can
be solved through using modular approaches by distributing and thereby reducing the complexity
per model. [LT17] investigate the latent vectors generated from the inverse mapping of images with
GANSs. They also show that previously unseen images converge to reasonable representations in
latent space, however they do neither investigate how good classification works with this technique
nor do they test a modular approach.

This work investigates three main questions: a) Is Inverse Classification able to construct previously
unseen patterns, i.e. can it reconstruct the pattern by only using temporal gradient information?

b) Is modular Inverse Classification able to classify previously unseen data correctly, i.e. does the
reproduced pattern have the smallest error to the true target vs. other targets? c) Is Modular Inverse
Classification, i.e. the combination of small modular generative networks, able to outperform a
standard forward approach trained on similar data? This is the main question of the report and
therefore tested and analyzed in multiple subexperiments. Those consist of testing different datasets
as basis for the generative models, adding noise to the input and output features, analyzing the
functionality of gradient methods and comparing it to conventional forward classification.

2 Inverse Classification using Generative Models

The basis of this paper is inverse classification using generative models. This means to first train
a generative model to learn to generate sequences. In the second step the same model is then used
to inversely classify data by generating sequences with an input vector. The sequences are then
compared to the target and the input vector is iteratively adapted through gradient based methods. A
more detailed explanation of the two step process can be found in the following two sections.

2.1 Sequence Generation

A recurrent neural network with LSTMs is trained to generate sequences from class inputs. The
classes are represented as one-hot vectors, i.e. vectors where one entry is one and all others are zero.
The model gets the class information only in the very first timestep, being fed zero values for the rest.
The model generates one part of the sequence at every point in time, not a one shot at the end. The
sequences used in this paper have two and 28 dimensions per time-step. In principal every generative
network could be used to inversely classify but since sequential data is being used, a recurrent model
is appropriate. A graphical depiction of the process can be found in Figure

2.2 Inverse Classification

The fully trained generative model is then used for inverse classification. Importantly, during the
entire classification process the networks weights are not changed. The success of the classification
relies only on the concepts learned during the generative training. To classify a given target sequence,
a data point is generated. Since there is no prior information which data point the target might be,
the first generation is always performed from a uniformly distributed input vector. The resulting
sequence is then compared to the sequence representing the target and an error is calculated. The
gradient of the first layer of the network with respect to that error is then calculated and the uniformly
distributed vector can be adapted proportional to the gradient. This process is done multiple times
until the classification process is stopped after a given amount of steps. In the optimal case the input
converges towards the one-hot vector representing the class of the target. Mathematically speaking,
the inverse classification can be thought of as the inverse function to the generation. This implies that
f~Y(f(x)) = x if the inverse classification process works optimal, where f(z), f~*(x) denote the
generative network and inverse classification respectively. A graphical interpretation of the process
for the character data set can be found in Figure

2.3 Extension to Modular Approach

To modularize Inverse Classification a separate generative network is trained for every data class, i.e.
for every character or number. To classify a previously unseen data point every network inversely
classifies the data point resulting in a reconstruction. Given that most networks are not able to
reconstruct a sequence that is very different from the one to be classified their reconstruction either
collapses like the ‘z’ in Figure 2] or it is an adapted version of the character that was learned by the
model like the ‘a’ in the same figure. Every reconstruction is then compared to the character to be
classified. The comparison is done by a mean squared error distance measure but other metrics could
be used as well.

3 Experiments

In this section three experiments are introduced. The first two are necessary conditions for modular
inverse classification (MIC) and the results are therefore discussed already with the introduction of the

Generative model:

Category Image as label

a

Inverse Classification:

Possible
e Image to be
classification classified
0.18
0.78

Figure 1: Depiction of the generative model and the Inverse Classification. For the Inverse Classifica-
tion he generative network (in this case an RNN) reconstructs the character by using the temporal
gradient information until it converges to a vector. A possible classification vector is represented in the
left

experiments. The main experiments is split into four subexperiments that are detailed in Subsection
[3:3] Before the experiments are explained, the technical setup is given.

3.1 Data

3.1.1 UCI Character Sequences

The first dataset contains handwritten digits taken from the UCI Machine Learning Repository
Character Trajectories Data Set from 2008 [BLI3]]. It contains only characters that can be written in a
single stroke, leading to 20 different classes with 2858 example characters in total. The six remaining
letters of the alphabet are left out since they cannot be written within a single stroke.

Originally, the digits are saved with x- and y- delta values, i.e. the difference between two following
points and a z-value representing the pin pressure used during the process of writing. For this work the
cumulative sum of the deltas are taken to get the absolute coordinates for the training and the values
for pin pressure are removed. A network trained on deltas instead of coordinates performed worse
and the pin pressure did not add predictive value. The data are padded with the last coordinate such
that all have the same length but no information is added or removed. Additionally, the individual
characters are standardized globally with mean 0 and standard deviation 1. Standardization leads to
slightly better predictions. Lastly, it should be noted that the characters are often hard to distinguish
even for humans. In figure[3]a cherry-picked "u’ is depicted on the left and a cherry-picked "w” on
the right. This fact makes the classification more complicated.

3.1.2 (Sequential) MNIST

MNIST is a large database of handwritten digits. Every image is represented as a 28 by 28 pixel grey
scale image. In total there are 60000 training and 10000 test images. In the experiments of this paper,
the pixel values are normalized. In other applications such as image classification every image is fed

Modular Inverse Classification:

Character to be classified:

Error: M sma%rror big error
Reconstruction: ?

Generative
Network:

4
a b - z

Figure 2: Depiction of the modular inverse classification. In the top row is a depiction of the character
we want to classify. Every individual generative network in the bottom row tries to reconstruct this
character by inverse classification. The resulting reconstructions, shown in the third row, is now
compared to the to be classified character. The reconstruction with the lowest error is chosen as the

winner.

index_2540 index_1239

-025

-0.50

-0.75
-1.00

-1.00 125

00 05 10 15 2.0 -075 -0.50 -0.25 000 025 050 075 100

(a) (b)

Figure 3: On the left the character 'u’ and on the right the character 'w’ is depicted as they are found
in the data set. Since they are rather similar in look the network might have additional difficulties

separating them accordingly.

into the network as a whole. In this application we use (sequential) MNIST, sometimes also referred
to as pixel MNIST, which means that every image is read in as a sequence of 28 pixel rows of size 28.

3.2 Setup of the Networks

Every generative network is an LSTM with 10 cells for the character sequences and 20 cells for
MNIST. It is trained on four different sequences that represent different types of a particular character.
How these types are chosen is shown in the Modular Approach Subsection Every network
is trained until the types have been learned perfectly, i.e. the mean squared error is close to zero.
This is achieved by training for 40000 episodes per network for the character sequences and 20000

episodes per network for MNIST. As an optimizer Adam [KB14] was used with learning rate 0.01
and otherwise standard parametrization. All inverse classification experiments were implemented
in python3 using Pytorch [PGC™17]]. The comparison to forward classification was implemented
using keras [CT15]. All code can be found online at https://github.com/mariushobbhahn/
Modular-Inverse-Classification.

3.3 Reconstruction of previously unseen Patterns

A necessary condition for inverse classification in general is that the generative network is able to
reconstruct previously unseen patterns. This means that it fits the character sequence by adapting
its states through the temporal gradient information. The tests for the reconstruction are done in
a qualitative manner and shown in Figure [and [5] for the MNIST and the character sequences
respectively. In the top row of the figure the data points on which the network was trained are shown.
It is important to stress that those points are the only representatives of a specific class the network
has ever seen. In the second row the test targets are shown. The network is given such a sequence and
is tasked with reconstructing such an image only through the gradient information. In the bottom row
the reconstruction of the network with the respective latent vectors is given. There are two findings
from the two figures. First, the reconstructions all significantly differ from the original four training
points, meaning that the network can construct previously unseen patterns. Evidence for this can be
found in both figures, even though it is more prominent in the character sequences. For example,
the line of the character ‘a’ in target 2 shows a sharp bend which none of the types the network is
trained on shows. The network is still able to account for that sharp bend in prediction 2. Second, the
reconstruction is done in a way that is a combination of the previously seen images with adaptions.
Prediction 2 in the MNIST Figure[d] for example, is a combination of 0.33 type 1 and 0.67 type 3.
However, it very likely is a non-trivial combination, given that a human might rather choose type
0 to reconstruct target 2. An extreme case for the combination aspect is shown in prediction 3 of
the character sequences where the network reconstructs target 3 mostly from type O if the gradient
information is to be believed even though the connection is not easily seen.

type O type 1 type 2 type 3

Training E m m E
target 0 target 1 target 2 target 3

o rget ﬂ . m E

prediction 0 prediction 1 prediction 2 prediction 3

ReconStrUCtionm m m E

Latent vector 104 0030170411 [0.740.220. 0.04] [0. 0.330. 0.66] [0.530.330.14 0.]

Figure 4: Reconstruction of previously unseen (sequential) MNIST images. In the upper row are the
four samples the networks has been trained on. In the second row are the test targets the network is
supposed to reconstruct and in the third row are said reconstructions with the respective final gradients.
From this comparison it is clear that the network is able to reconstruct images that it has never seen
during training through gradient information.

https://github.com/mariushobbhahn/Modular-Inverse-Classification
https://github.com/mariushobbhahn/Modular-Inverse-Classification

type 0 type 1 type 2 type 3

Training
target 0 target 1 target 2 target 3
Test target
prediction 0 prediction 1 prediction 2 prediction 3
Reconstruction
Latent vector [0.150. 0.850.] [0.090.110.790.01] [0.420. 0.570.] [0.920. 0.080.]

Figure 5: Reconstruction of previously unseen handwritten character sequences. In the upper row
are the four samples the networks has been trained on. In the second row are the test targets the
network is supposed to reconstruct and in the third row are said reconstructions with the respective
final gradients. From this comparison it is clear that the network is able to reconstruct sequences that
it has never seen during training through gradient information.

3.4 Classification of previously unseen Data

To test whether modular Inverse Classification is a promising approach every generative model is
tested to reconstruct every character or every number. This is done by taking 20 previously unseen
sequences per class and inversely classifying them. A heat map of the reconstruction loss, i.e. average
mean squared error between target and reconstruction is created. In the optimal case there are dark
entries on the diagonal and light entries everywhere else. This means that every generative network
exactly classifies the character/digit it is supposed to classify and no other. However, given the
similarities between some characters like ‘v’ and ‘w’ in handwritten digits or the similarities between
‘8’ and ‘9’, for example, their difference should also be smaller. It is important to point out that there
is an inherent trade-off between the flexibility of the generative models and its accuracy. The higher
the flexibility of the generative model the more likely it is to not only reproduce the correct class
but also fit samples of an incorrect class, thereby increasing the misclassification rates. The best
performing model for the clustered subsets of both the MNIST and the character sequences datasets
have been tested according to the just described procedures. The resulting heat maps are shown in
Figure[6] In the upper row the results for the character sequences on the training data and the test data
can be seen on the left and right respectively. In the lower row the results for MNIST are displayed,
also showing the reconstructions on the trainingsset on the left and on a test set on the right. In all
cases the darkest entries per row and column lie on the diagonal. That means on average our model
reconstructs the data point it is supposed to reconstruct best. The reconstruction of previously unseen
data, which is depicted in the right column of the figure, is slightly worse than those of the training
data, but still sufficiently good given the darkness of the diagonal entries.

3.5 Modular Approach

As already motivated in the introduction a generative network trained on all input sequences is not
able to provide inverse classifications that outperform the conventional forward approach but only
ones that are similarly good in some circumstances. This result is likely the case because a latent

heat map of the loss heat map of the loss

a a
b b
c c
d r4 d
e e
g 9
h h
I r3 I
C m T m
= 2
g 5"
P z o
Lr 2 Lp
q q
r r
s s
u 1 u
v v
w w
Yy Yy
z z
abcdeghlImnopgrsuvwyz abcdeghlImnopgrsuvwyz
average loss of generated char average loss of generated char
(a) (b)
heat map of the loss heat map of the loss
0.09
0
0.08
1
0.07
2
3 0.06
o o
L4 0.05 %
2 g
= kil
o o
8° 0.04 8
6 0.03
7
0.02
8
0.01
9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
average loss of generated number average loss of generated number
(© (@

Figure 6: Heat map of the loss for character sequences and MNIST dataset for train and test data.

Each heat map is constructed by taking the average loss of the reconstruction of a data point and
the true data point for all models and all data points. a) character sequences train data b) character
sequences test data ¢) MNIST train data d) MNIST test data

space of that size is not very smooth when trained with LSTMs. To solve this problem a modularity
is introduced like described in Subsection 23] To test whether the modularity works, multiple
experiments are described in the following.

3.5.1 Clustered versus Random Training Samples

To train the modular Inverse Classification (MIC) networks training samples are needed. Since a
subset of the entire dataset is chosen for both the MNIST and the character sequences we need to
specify a mechanism for that choice. Here we use two mechanisms. First, a clustered sampling that
is chosen by K-means clustering with the DTW-distance for the character sequences and Euclidean
distance for the MNIST dataset as metrics. This is supposed to be a best case test, i.e. how good is
MIC if we have samples that are good representatives of the underlying distributions. Second, we use
random sampling, i.e. choose four random samples per class (seeds are 42, 142, 242, 342, 442). This
is supposed to be an average case test, i.e. how good is MIC if we have very few samples that are
average representatives of the dataset. The experiment is a comparison of the overall and per class
accuracies of the models trained on clustered and random datasets respectively.

3.5.2 Addition of Noise on input and output

There are two complications with modular Inverse Classification (MIC) that can be solved through
the addition of noise. First, the latent space is not very smooth because the network only trains on
one-hot vectors. This can be helped with adding noise on the input, i.e. Gaussian noise with mean
0 and standard deviation o. Additionally the new input vector is clipped at O and 1 such that the
network does not see values smaller than O or bigger than 1. This primarily serves the purpose of
smoothing the latent space such that the small steps along the gradient that MIC uses can be used to
converge and have no abrupt breaks. Second, the number of samples is very restricted in our settings.
By adding noise on the output data we hope to simulate variations in those data points and thereby
enhancing the performance of the model. In the experiments multiple values for the noise parameters
are added to the data where only the standard deviation of the Gaussian noise o is changed. The
addition of input noise is similar for both datasets, given that both use a one-hot encoding for their
sequences generation. The noise added on the output data is different because the addition of noise
on a sequence of coordinates is way more destructive than on image pixels. In addition to the overall
accuracy the per class accuracy is also reported.

3.5.3 Distinction between Modular Approach with and without Inverse classification

It could be argued that the positive results of the modular Inverse Classification (MIC) stem only
from the modularity of the network and not from the gradient information. To test the influence
that the inverse part of MIC has we compare the results of the MIC after 0 and 50 iterations on
previously unseen data. MIC with 50 iterations is the usual setup that was used throughout this work
and is therefore representative for the approach. If there is a difference between the O iterations
and 50 iterations case that means the gradient information has an influence on the classification.
This difference is determined along two metrics. The first metric is accuracy, as is fitting for a
classification task. The second is the mean squared error (MSE). This metric is used because a MIC
model with 50 iterations that has the same accuracy as a MIC model with O iterations can still fit
the correctly classified data better and therefore be advantageous compared to not using the gradient
information. The comparison is conducted for both datasets and both the random and the clustered
subset respectively along these two metrics.

3.5.4 Comparison to Forward Classification

To establish the feasibility of the modular Inverse Classification (MIC) we compare it to the conven-
tional forward classification approach. That is to train a network of similar size on the respective
training dataset and testing its accuracy on previously unseen data. To make a fair comparison the
network has the same amount of LSTM cells as the sum of all small networks in the MIC case. Note,
that the same amount of cells does not imply the same amount of parameters. Ten networks of 20
cells each have significantly less parameters in total than a network with 200 LSTM cells because the
cross connections are not accounted for. For both the MNIST and the character sequence dataset, an
individual network is trained and tested on previously unseen data. This procedure is done for the
entirety of the dataset and both of the two subsets, i.e. clustered and random datapoints.
Additionally, one could argue that the MIC classification is just a slightly advanced template matching
technique. Therefore a nearest neighbor classifier is also concluded in the comparison. It takes the
all training examples and selects the class of the sample that has the lowest MSE to the target. This
template matching approach is also done for the random and clustered sets for both experiments.

4 Results for Modular Inverse Classification

The necessary preconditions for modular inverse classification (MIC) to work were fulfilled in the
previous sections. From a theoretical standpoint MIC should therefore be able to classify previously
unseen data correctly. The empirical evaluations of the main experiments are presented in the
following. Every experiment has been conducted 5 times to prevent outliers from skewing the results.
For every result the average accuracy and its standard deviation are presented.

4.1 Clustered vs Random Training Samples

The accuracies of the models without the addition of noise to input or output can be found in Table ([T}
The MNIST models achieve an average accuracy of 0.834 for clustered and 0.525 for random. In the
case of the character dataset we have an accuracy of 0.791 for clustered and 0.771 for random. So
in both cases, as expected, clustered dataset performs better than the one based on random samples,
even though the difference in the Character dataset case is small.

Table 1: Accuracies of models without the addition of any noise to the input or output. In both the
MNIST and character dataset the clustered version achieves better results than the random one.

Dataset Random Clustered
MNIST 0.525 + 0.025 0.834 £ 0.020
Characters 0.771 £ 0.030 0.791 £ 0.021

4.2 Addition of Noise to input and output

In Table 2] the results for the noise experiments of the MNIST clustered dataset are depicted. For
different combinations of noise on input and output the average accuracy with standard deviations is
reported for the random and clustered datasets respectively. Additionally, for both datasets the best
accuracy is reported as well, i.e. the accuracy of the best individual model. This result is reported
because it shows the capability of the technique, i.e. suggesting the potential of it once more research
is done on good hyperparameters and/or the optimization in general. There are three main results
from the noise experiment on MNIST: a) adding noise helps overall. The accuracy is increased by
about 7% on average and in the best case scenarios for the random dataset and around 4% for the
clustered dataset. b) Adding noise to the input is more impactful than adding noise to the output.
¢) Combining the effects increases the accuracy as well. In both the random and clustered case the
highest average accuracy comes from models with input and output noise.

The setup for the Character dataset is very similar to the one for MNIST, the only exception being
the absence of combinations of input and output noise. The reason for this is that output noise has
on average worse effects on the accuracy than no output noise. It can therefore be expected that the
combined results are worse than the input noise results alone. That being established, there are two
main results from the noise experiments on the character dataset: a) Adding noise to the input is as in
the MNIST case effective. It increases the average accuracy for around 6% on the random dataset
and around 9% on the clustered one. b) Adding noise to the output has none or negligible effects
on accuracy, either negatively influencing the averaged results or only slightly improving it. The
reason for the difference between the addition of output noise in the MNIST and Character dataset
case is likely the representation of the data. Remember, that MNIST is represented as pixels and the
Character sequences as coordinates.

Table 2: Results for the addition of noise experiments on the MNIST random and cluster datasets.
For different levels of input and output noise the average accuracy with standard deviation is shown for
both datasets. Additionally, the best accuracy for all models is shown as a proxy for the potential of the
technique. Adding noise on input is slightly better than on the output, combining the two has the best
results.

noise in noise out avg. acc. % std. (rnd.) best acc. (rnd.) , avg. acc. £ std. (cluster) best acc. (cluster)

0 0 0.525 £0.025 0.562 0.834 £0.020 0.85
0.1 0 0.579 £ 0.029 0.615 0.870 £ 0.010 0.882
0.2 0 0.584 £ 0.042 0.643 0.865 £ 0.011 0.884

0 0.1 0.565 £ 0.042 0.619 0.842 £ 0.008 0.858

0 0.2 0.565 £ 0.020 0.589 0.838 £0.014 0.851
0.1 0.1 0.567 £ 0.050 0.619 0.874 £ 0.008 0.888
0.2 0.1 0.578 £ 0.049 0.642 0.873 £ 0.005 0.879
0.1 0.2 0.591 £ 0.029 0.626 0.873 £0.012 0.892
0.2 0.2 0.595 £+ 0.028 0.638 0.869 £ 0.005 0.877

In Subsection [5.3]in the appendix a detailed analysis of the per class accuracy for some models can
be found since here only the averaged accuracies are presented. It shows that the models have a

Table 3: Results for the addition of noise experiments on the Character random and clustered datasets.
For different levels of input and output noise the average accuracy with standard deviation is shown
for both datasets. Additionally, the best accuracy for all models is shown as a proxy for the potential
of the technique. Adding noise on the input is effective while adding noise on the output is either
counterproductive or negligible.

noise in noise out =~ avg. acc. £ std. (rnd.) best acc. (rnd.) = avg. acc. + std. (cluster) best acc. (cluster)

0 0 0.771 £ 0.030 0.795 0.791 £ 0.021 0.815
0.1 0 0.834 + 0.034 0.87 0.887 £ 0.022 0.905
0.2 0 0.831 +£0.038 0.9 0.889 + 0.014 0.905

0 0.1 0.763 £ 0.034 0.8175 0.793 +£ 0.022 0.818

0 0.2 0.761 £ 0.036 0.8175 0.815 £ 0.022 0.845

high variance between classifying individual classes correctly. This is important information because
in a modular setting one can target and improve a bad performing module to increase to overall
performance.

4.2.1 Distinction between Modular Approach with 0 and 50 iterations

The results of the comparison between MIC with 0 and with 50 iterations can be found in Table[d] For
all four datasets MIC is compared with 0 and 50 iterations of gradient updates measured by accuracy
and MSE as metrics. In all cases the results for the base model and for the model which yields the
best result after 50 iterations in the respective category are shown. The later is denoted as the ‘best’
accuracy and MSE. Since the result after 50 iterations does not mean that the model after 0 iterations
is also better than the base models the entries for the ‘best’ category for O iterations can sometimes
be worse than the accuracy for the base model. In all cases the model with 50 iterations of gradient
updates performs better than the model with 0 iterations. This is strong evidence for the usefulness of
iterative gradient methods and inverse classification as a concept.

Table 4: Results for the comparison of MIC with 0 and 50 iterations. For all four datasets MIC is
compared with 0 and 50 iterations of gradient updates. For all datasets the results for the base model
and for the model with overall best accuracy for 50 iterations is shown. The values for the accuracy
best column for 0 iterations are chosen from the model with the highest accuracy from 50 iterations.
In all cases doing inverse classification for 50 iterations yields significantly better results than with 0
iterations.

Dataset (#iterations) accuracy accuracy best ~ MSE MSE best
clustered MNIST (0) 0.705 0.689 0.059 0.056
clustered MNIST (50) 0.83 0.873 0.041 0.039

“random MNIST (0) | 0449 | 0447 0099 0088
random MNIST (50) 0.562 0.643 0.076 0.041

~ clustered characters (0) | 0.715 | 0768 0445 0226
clustered characters (50) | 0.880 0.91 0.257 0.099

" random characters (0) | 0.68 0715 0339 0349
random characters (50) 0.720 0.818 0.254 0.196

4.2.2 Comparison to Forward Classification

The results of the conventional classification methods are displayed in Table[5] For both datasets
the full dataset receives the highest and a close to perfect accuracy with 0.99 and 0.973 respectively.
In the restricted datasets with only four representatives per class accuracies drop significantly in
both cases with 0.633 and 0.504 for MNIST and 0.613 and 0.687 for the character sequences for the
clustered and random data choice mechanism respectively. In the case of the character sequences
the network trained on clustered data is outperformed by the one trained on randomly chosen data.
This is unexpected. One could argue that K-Means clustering returns data points that are very
different from each other and this might influence the forward classification because most points
are somewhere between the cluster centers. However, that same argument would also apply to the
forward classification of the clustered MNIST dataset and both cases of inverse classification. Given
that this is not the case the reason for this result remains unclear.

10

Table 5: Results for the conventional forward models. The models have been trained on the random
and clustered subsets for MNIST and character sequences respectively and additionally for the entirety
of the dataset. The average and standard deviation of the accuracy over 5 runs is reported. The
model trained on all data outperforms the others in both cases. The model trained on the clustered
samples is better for than the one trained on random samples MNIST and the character sequences.
The results of the nearest neighbor classifier (NN) are shown on the right

Dataset Random (LSTM) Clustered (LSTM) Full (LSTM) = Random (NN) Clustered (NN)
(sequential) MNIST 0.480 £ 0.020 0.645 £ 0.015 0.99 £ 0.0 0.586 £+ 0.034 0.873
Character sequences 0.575 £0.112 0.620 £ 0.065 0.978 £ 0.006 | 0.828 £ 0.023 0.927

5 Conclusion

In this paper we showed that using gradient information of a generative model to iteratively update
the current best approximation of a previously unseen data point can be used for classification tasks
(Subsection [3.3). Furthermore we showed that the generative model primarily reconstructs and
therefore classifies the classes it is supposed to reconstruct and not any other (Subsection [3.4). Lastly,
it was shown that if applied in a modular fashion the technique is able to outperform conventional
forward methods of classification (Section [).

A final comparison of the most important results is shown in Table [f] For both datasets
(MNIST/Characters) the accuracy of all experiments is compared. For the clustered and random five
different results are compared respectively. ‘MIC base’ describes the average accuracy of the baseline
MIC model, i.e. no addition of noise on either input or output. ‘MIC best average’ describes the best
average accuracy of one model after five experiments have been conducted with the same settings.
‘MIC best model’ describes the best single model that has been trained on the specific subset of data.
We acknowledge that this is an outlier but we preset the result as a proxy for the potential that this
technique has. The ‘forward’ models show the average accuracy of a conventional LSTM model
trained on the same data while ‘NN’ is a nearest neighbor classifier applied on the same data. In
all cases even the worst MIC models are able to beat the conventional forward classifier by a clear
margin. This gives evidence that in the low-data regime generative models are better at converting
information than forward models. In three out of four cases the MIC best average and MIC best
model beat the NN classifier. This is important because the NN was established as a baseline for
our model. Especially the fact that the MIC best models are able to outperform the NN by up to 7%
shows that this technique is a research direction worth exploring. Lastly, the technique is compared
to a forward model trained on the full dataset. Even the MIC best models are not able to achieve the
same accuracy as the conventional forward models. This would have been unexpected given that this
is a difference of 40 vs 60000 training samples for MNIST and 80 vs 2200 trainings samples for the
character sequences. In light of this difference in training set size the accuracies achieved by the MIC
are still good for many applications.

5.1 Limitations

Even though the technique of MIC has advantages, which are discussed in the previous parts of the
paper, there are two limitations that are layed out in the following. First, and most importantly, more
training data does not necessarily mean a higher accuracy for MIC. The generative model is likely to
converge to one representation of a class that is independent of the number of training samples it has,
thereby limiting the effect of the gradient based method. This can be circumvented by training each
generative model with types, i.e. giving each label a unique one-hot encoding. However, this gets
very inconvenient for large datasets, especially when the number of training points is not static but
gets updated over time. On the flip side, when a new training point is added only one module needs
to be retrained instead of the entire forward classification model.

Second, the time to classify a test data point is longer than in conventional methods. In the forward
case the classification of a test data points needs one forward pass through the model. In the case
of MIC the test point is inversely classified in every single network. This inverse classification, or
reconstruction, is in itself an optimization process and therefore more expensive. However, if the
hardware is available and the implementation correct, the inverse classification process for every
module can be parallelized, since all modules are independent of each other.

11

Table 6: Comparison of all results. For both datasets the results for MIC without noise (base) with
noise (best) and a conventional forward classification model (forward) are compared. In all cases the
MIC outperforms the forward model and is improved by the addition of noise to in and output. In three
out of four cases MIC is able to beat a nearest neighbor classifier (NN). MIC is not able to beat a
forward model trained on the entirety of the dataset.

Dataset MNIST Character sequences
clustered (MIC base) 0.834 0.791
clustered (MIC best average) | 0.874 0.889
clustered (MIC best model) 0.892 0.905
clustered (forward) 0.645 0.620
clustered (NN) 0.873 0.927
“random (MIC base) | 0525 077t
random (MIC best average) 0.595 0.834
random (MIC best model) 0.643 0.9
random (forward) 0.480 0.575
random (NN) 0.586 0.828
" full dataset [09 0973

5.2 Future Outlook

In the following two ideas for future research are layed out. Even though LSTMs are sufficiently
good as generative models, GANSs are the current state of the art and might therefore yield better
results for MIC. It might even be possible not to use a modular but a holistic approach, given that
GANSs yield more smooth latent spaces than other generative models.

Another possible extension is to move higher on the abstraction hierarchy by letting the generative
model infer the types of the input data instead of giving them as input. An idea similar to this has
already been shown to work and improve gradient based methods in [MDAS18]]. Given the similarity
of the setup it is likely to also work for MIC.

References
[BL13] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[C*15] Frangois Chollet et al. Keras. https://keras.io, 2015.
[Hob18] Marius Hobbhahn. Inverse classification using generative models. 2018.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[LT17] Zachary C. Lipton and Subarna Tripathi. Precise recovery of latent vectors from genera-
tive adversarial networks. CoRR, abs/1702.04782, 2017.

[MDAS18] Martin V. Butz, David Bilkey, Alistair Knott, and Sebastian Otte. REPRISE: A Retro-
spective and Prospective Inference Scheme. 2018.

[ORB19] Sebastian Otte, Patricia Rubisch, and Martin V. Butz. Gradient-based learning of
compositional dynamics with modular rnns. In Artificial Neural Networks and Machine
Learning — ICANN 2019, 2019. Accepted for publication.

[OSFB17] Sebastian Otte, Theresa Schmitt, Karl Friston, and Martin V. Butz. Inferring adaptive
goal-directed behavior within recurrent neural networks. In Alessandra Lintas, Stefano
Rovetta, Paul EM.J. Verschure, and Alessandro E.P. Villa, editors, Artificial Neural
Networks and Machine Learning — ICANN 2017, pages 227-235, Cham, 2017. Springer
International Publishing.

[PGC*T17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

12

https://keras.io

Appendix
5.3 Noise on input and output - Appendix
Table 7: Results for the noise experiments for the MNIST random dataset. The overall accuracies and

individual accuracies for every number are depicted for all levels of additional noise. It is clear to see
that some numbers are easier to learn than others.

noise in noise out overall 0 1 2 3 4 5 6 7 8 9
0.0 0.0 0.562 | 0.788 0.929 0.259 0.252 0.636 0.172 0.770 0.737 0.618 0.436
0.1 0.0 0.602 | 0.776 0921 0.509 0.318 0.536 0.448 0.736 0.697 0.562 0.489
0.2 0.0 0.643 | 0.800 0.952 0.578 0.439 0.600 0.563 0.770 0.717 0.629 0.340
0.0 0.1 0.608 | 0.788 0.952 0.491 0467 0.755 0414 0.724 0576 0.629 0.202
0.0 0.2 0.577 | 0.788 0913 0.466 0.327 0.500 0.460 0.609 0.707 0.461 0.500
0.1 0.1 0.619 | 0.706 0.944 0.500 0.402 0.436 0644 0.782 0.717 0.584 0.468
0.1 0.2 0.626 | 0.753 0.881 0.517 0.495 0.609 0.483 0.747 0.747 0.652 0.340
0.2 0.1 0.628 | 0.741 0.889 0.534 0.607 0.564 0.563 0.736 0.707 0.528 0.362
0.2 0.2 0.618 | 0.765 0.857 0.534 0.551 0.582 0.506 0.805 0.535 0.640 0.383

Table 8: Results for the noise experiments for the MNIST clustered dataset. The overall accuracies
and individual accuracies for every number are depicted for all levels of additional noise. It is clear to
see that some numbers are easier to learn than others.

noise in noise out = overall 0 1 2 3 4 5 6 7 8 9
0.0 0.00 0.830 | 0.918 0992 0.759 0.748 0.773 0.862 0.908 0.778 0.764 0.798
0.1 0.00 0.861 | 0.929 1.000 0.819 0.841 0.691 0.897 0943 0.838 0.742 00915
0.2 0.00 0.858 | 0.918 0.984 0.828 0.860 0.755 0.920 0.954 0.808 0.730 0.819
0.0 0.10 0.858 | 0.941 0.992 0.767 0.710 0.836 0.885 0.920 0.848 0.798 0.894
0.0 0.25 0.813 | 0.941 0984 0.741 0.813 0.791 0.782 0920 0.899 0.708 0.521
0.1 0.10 0.870 | 0.918 0.984 0.836 0.841 0.836 0.874 0954 0.848 0.730 0.862
0.1 0.25 0.862 | 0.918 0.992 0.828 0.850 0.636 0.897 0.954 0.859 0.764 0.936
0.2 0.10 0.873 | 0.918 1.000 0.853 0.841 0.745 0.874 0954 0.848 0.798 0.894
0.2 0.25 0.868 | 0.929 1.000 0.836 0.785 0.827 0.851 0943 0.869 0.798 0.830

13

LL9°0 0001 €SS0 80L0 0001 Iv6'0 LS80 ¢€£€8°0 01 8IT'0O 90L0 €SS0 LTLO 90L0 0090 660 01 9260 00T €160 | 06L°0 2000°0 0
000 8S60 S¥'0 €850 €€60 I¥6'0 6060 €€80 O +6C0 Ly90 080 LTLO 6CS0 L9900 660 O1 €960 S60 9560 | S8L0 1000°0 0
8¢€S'0 000'T 0S50 €€80 9980 1I¥6'0 98L0 €€8°0 O ¥6C0 L¥9O0 680 €LLO S9L0 0090 660 OT1 €960 00T 000T | 8180 2000°0 o
8¢6°0 000°T €SSO 0SLO 000T 1I¥6'0 98L0 +v6'0 01 0000 CIY'0 €90 8IS0 L¥P90O 0090 660 01 €960 00T 000T | 06L°0 1000°0 1o
000 000°'T OF'0 0050 L9880 I¥6'0 €90 ¢€€80 O1 8IT'0O TIFO0O 080 0050 O9LI'0 €€50 S6'0 OT1 0001 00T O0L80 | 8ILO 2000°0 00
0050 LI60 OV'0 €290 0007 1I¥6'0 PILO €€80 OT1 6800 +6C0 080 60’0 S9L°0 €€60 S60 OT $0LO 00T 9280 | €€L°0 1000°0 00
NEN 00S°0 00T O0SLO €680 000T 6¢60 w60 O1 +6C0 0000 060 1600 I¥6'0 L980 S6'0 OT1 0001 00T 9280 | €6L°0 0000°0 0
69L°0 8S6'0 0C0 8S¥0 0001 I¥6'0 LS80 6880 01 9¢C0 ILVO S6'0 LTLO TIVO €€50 660 01 €960 00T 9560 | SLL'O 0000°0 1’0
8¢C'0 0001 SCTO TPSO 9980 <T880 6¢F0 ¢€€8°0 01 8IT'0O 90L0 080 LCLO v6C0 €£50 660 01 ¢TS80 S6'0 9780 | 0CL0 0000°0 00

z K M A n S 1 b d o u w 1 q 3 9 P b) q e [[EI9A0 INO 9sIOU Ul JSIOU

"9SI0U [BUONIPPE JO S|8AJ) ||& 10} pa1oidap ale Jajorieyd A1eAs 10} SSIOBINOOR [BNPIAIPUI PUB SSIOBINOOR ||BISAO 8
"JOSElep SI8J0BIBYD WOPURI 8Y) 10} Sjuswiiadxe asiou 8y} 1oy s)nsey 0} d|qeL

000°T 000°T 0SS0 0050 0007 TI¥6'0 0007 €€80 0007 <880 <¢880 0001 w980 0900 000T S60 01 OT 0560 9560 | €L80 <000°0 (40
NeN 0001 000T 0080 <¢TvS0 ¢€€60 I¥6'0 0001 €€80 0001 €90 0S6'0 LZLO €S9L0 000T 660 01 OT 0001 €160 | 8680 2000°0 0
296'0 0001 0SS0 €€80 00017 1I¥6'0 0007 €€80 0007 +C80 +C80 0S6'0 €LL0 90L0 000T 660 01 OT 0001 00071 |O0I60 1000°0 10
000°T 000°T SC9°0 0050 TLSO 0001 SL80 SL80 0007 O000T 680 €£€80 9990 00L0 0060 00T OT OT 0001 00071 | S880 1000°0 10
G880 €€8°0 O0OSF0 6790 ¢€£6'0 I¥6'0 98L0 ¢€€8°0 000T +C80 S9L0 0SL0 0050 6TS0 ¢€€60 S60 0T 01 0001 6¢€L0 | SIS0 2000°0 00
9¥8'0 0001 O0S¥'0 8S¥'0 0090 1I¥6'0 0001 €€80 0007 6¢50 L¥P90 0060 1650 ILVO €€60 S60 OT1 OT 0001 0L80 | 8080 1000°0 00
000°'T 000°T 0STO €850 L9880 [I¥6'0 000 T 8LLO 000T L¥90 vC80 0S6'0 LCLO vI80 €£60 S6°0 0T 0560 00071 | $98°0 0000°0 0

01
8€6'0 000'T SLEO 9€90 6880 6060 6060 0007 000°T 0090 0001 0001 8LLO 8I80 LI6O 00T OT OT1 LS80 0001 | S68°0 0000°0 1’0
L98°0 000'T 6¢F0 69L0 9¥80 6880 +vILO 0007 0007 6060 LZLO 0001 6880 0001 0SL0 00T OT OT1 0001 LS80 | 0880 0000°0 00
p 2

z K Y A n s 1 b d o u w 1 q 3 9 q e [[BI9A0 = INO 9SIOU Ul 3sIou

"9SI0U [BUORIPPE JO S|9A9) |[e 10} paloidep ale Jsjorseyd A1oAe J0j SSIOBINOOE [BNPIAIPUI PUEB SBIOBINOJE |[BJOA0 By
"]oSB]Bp SJ9J0BIBYD PBJBISN|O 8yl IO} Sluswiiedxs 8sIou 8yl J0) S)NSaY :6 d|qeL

14

5.4 Distinction between Modular Approach with and without Inverse classification -
Appendix

Table 11: Full table of MIC with 0 and 50 iterations comparisons. In the left two columns the noise on
input and output are depicted. On the two middle columns the accuracies for 0 and 50 iterations are
shown respectively. In the right two columns the mean squared error (MSE) for the same comparison
is shown.

dataset noise_in noise_out Accuracy Accuracy MSE (0) MSE (50)
0) (50)

MNIST clustered || 0.0 0.0000 0.705 0.830 0.059 0.041
0.1 0.0000 0.669 0.861 0.059 0.040
0.2 0.0000 0.710 0.858 0.057 0.040
0.0 0.1000 0.695 0.858 0.059 0.041
0.0 0.2500 0.707 0.813 0.059 0.041
0.1 0.1000 0.689 0.870 0.056 0.039
0.1 0.2500 0.704 0.862 0.057 0.040
0.2 0.1000 0.686 0.868 0.057 0.040
0.2 0.2500 0.689 0.873 0.059 0.040

MNIST random 0.0 0.0000 0.449 0.562 0.099 0.076
0.1 0.0000 0.491 0.602 0.094 0.068
0.2 0.0000 0.447 0.643 0.088 0.067
0.0 0.1000 0.480 0.608 0.096 0.072
0.0 0.2000 0.503 0.577 0.095 0.072
0.1 0.1000 0.532 0.619 0.099 0.065
0.1 0.2000 0.485 0.626 0.094 0.069
0.2 0.1000 0.488 0.628 0.088 0.041
0.2 0.2000 0.534 0.618 0.088 0.066

Chars clustered 0.0 0.0000 0.715 0.880 0.445 0.266
0.1 0.0000 0.778 0.895 0.278 0.134
0.2 0.0000 0.778 0.865 0.277 0.118
0.0 0.0001 0.783 0.808 0.290 0.164
0.0 0.0002 0.743 0.815 0.318 0.192
0.1 0.0001 0.845 0.885 0.257 0.099
0.1 0.0002 0.808 0.898 0.265 0.111
0.2 0.0001 0.768 0.910 0.269 0.106
0.2 0.0002 0.795 0.873 0.288 0.111

Chars random 0.0 0.0000 0.680 0.720 0.339 0.254
0.1 0.0000 0.663 0.775 0.332 0.218
0.2 0.0000 0.753 0.793 0.343 0.238
0.0 0.0001 0.718 0.733 0.377 0.246
0.0 0.0002 0.653 0.718 0.410 0.270
0.1 0.0001 0.683 0.790 0.343 0.213
0.1 0.0002 0.715 0.818 0.349 0.196
0.2 0.0001 0.688 0.785 0.329 0.202
0.2 0.0002 0.663 0.790 0.390 0.228

15

	Introduction
	Inverse Classification using Generative Models
	Sequence Generation
	Inverse Classification
	Extension to Modular Approach

	Experiments
	Data
	UCI Character Sequences
	(Sequential) MNIST

	Setup of the Networks
	Reconstruction of previously unseen Patterns
	Classification of previously unseen Data
	Modular Approach
	Clustered versus Random Training Samples
	Addition of Noise on input and output
	Distinction between Modular Approach with and without Inverse classification
	Comparison to Forward Classification

	Results for Modular Inverse Classification
	Clustered vs Random Training Samples
	Addition of Noise to input and output
	Distinction between Modular Approach with 0 and 50 iterations
	Comparison to Forward Classification

	Conclusion
	Limitations
	Future Outlook
	Noise on input and output - Appendix
	Distinction between Modular Approach with and without Inverse classification - Appendix

